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Effective viscosity of a periodic suspension 

By KEVIN C. NUNANT AND JOSEPH B. KELLERS 
Department of Mathematics, Stanford University, Stanford, California 94305 

(Received 4 August 1983 and in revised form 29 December 1983) 

The effective viscosity of a suspension is defined to be the four-tensor that relates 
the average deviatoric stress to the average rate of strain. We determine the effective 
viscosity of an array of spheres centred on the points of a periodic lattice in an 
incompressible Newtonian fluid. The formulation involves the traction exerted on a 
single sphere by the fluid, and an integral equation for this traction is derived. For 
lattices with cubic symmetry the effective viscosity tensor involves just two 
parameters. They are computed numerically for simple, body -centred and face-centred 
cubic lattices of spheres with solute concentrations up to 90 % of the close-packing 
concentration. Asymptotic results for high concentrations are obtained for arbitrary 
lattice geometries, and found to be in good agreement with the numerical results for 
cubic lattices. The low-concentration asymptotic expansions of Zuzovsky also agree 
well with the numerical results. 

1. Introduction 
We shall calculate the effective viscosity of a suspension of rigid spheres in an 

incompressible viscous fluid, with the spheres centred a t  the points of a periodic 
lattice. For such a special configuration we can obtain results for all values of the 
volume concentration c ,  from zero up to the close-packing value c,,,. 

We begin by proving that the average deviatoric stress in the suspension is linearly 
related to the average rate of strain. The effective viscosity p&l is defined to be the 
four-tensor in this relation. It is determined by the traction of the fluid on a single 
sphere, and an integral equation for this traction is derived. Its kernel is a periodic 
Green function, which can be represented as a sum over the reciprocal lattice. The 
integral equation also involves the angular velocity of the sphere, for which a second 
equation is obtained. 

For a cubic lattice (simple, body-centred or face-centred) the symmetries of the 
kernel greatly simplify the integral equation. It can be shown that the angular 
velocity of each sphere is just one half the curl of the average fluid velocity, and the 
effective viscosity tensor has the form 

&kZ = p( +p) a('ik ' j l +  ' j k  'kl) +p(a-p) ( ' i jk l -v i j  'k2)' ( 1 )  

Here p is the viscosity of the fluid, a,,, is unity if all the subscripts are equal and 
zero otherwise, and a and p are functions of the concentration and the lattice 
geometry which can be expressed as integrals of the traction over a single sphere. We 
use a Galerkin method to solve for the traction, following the procedure used by Zick 
& Homsy (1982) and Zick (1983). The results for a and /3 are shown in figures 1-6. 

For low concentrations Zuzovsky (1976) and Zuzovsky, Adler & Brenner (1 983) 
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have obtained asymptotic formulas for a and /? to O(cy) .  Our numerical results 
corroborate their formulas and determine their range of validity. Frankel & Acrivos 
(1967) obtained the leading-order term in the asymptotic expansion for a a t  high 
concentrations, but only for a simple cubic lattice. Zuzovsky (1976) corrected their 
result and also gave the leading-order term for /?. We have obtained additional terms 
in these expansions for a simple cubic lattice and have also calculated the corresponding 
results for body-centred and face-centred cubic lattices. Our analysis is in fact valid 
for arbitrary lattice geometries, and a general high-concentration asymptotic formula 
for pg.kl is given. The asymptotic formulas for the three cubic lattices are in good 
agreement with our numerical results, except for /? in the face-centred case, where 
numerical errors at high concentrations are severe. These results show that the 
contention by Kapral & Bedeaux (1978) of a singularity a t  less than close-packing 
concentrations is incorrect. 

A cubic lattice of spheres in a uniform shear flow will be distorted by the flow. The 
spheres will remain on a lattice, but the lattice will not remain cubic. Therefore our 
solution for a cubic lattice will apply only at one instant. For unidirectional flows, 
the lattice will become cubic again after a finite time, and this will be repeated 
periodically. Then the effective viscosity will be a periodic function of time. In  any 
case, it can be computed by applying the present methods to each lattice through 
which the configuration passes. 

2. Formulation 
We consider a set of solid, neutrally buoyant spheres of radius b centred on the 

points of an infinite three-dimensional lattice r0 = alal +a,a,+a3a3, a € Z 3 .  The 
basis vectors ai determine a unit cell having volume T,, = la, - (a, x a3) 1, and the volume 
concentration of spheres is c = 4nb3/3r,,. We assume that the spheres are immersed 
in a homogeneous, isotropic Newtonian fluid undergoing slow flow. Then within the 
region E containing the fluid, the pressure p ,  viscosity p, velocity ui and stress tensor 
aij satisfy the Stokes equations : 

ac. .  
$ = O  ( ~ ( E E ) .  (4) 

We introduce an overall constant shear tensor y i j ,  with yii = 0, by requiring that 
the fluid velocity ui be the sum of a linear part yijxj and a part that is lattice-periodic. 
More precisely, we impose the condition 

u,(x+ra) = ui(x)+yiirr ( x E E ,  aeH3).  ( 5 )  

We impose no-slip boundary conditions on the surfaces of the spheres. The spheres 
may rotate with some angular velocity wi ,  which, by periodicity, must be the same 
for each sphere. Let 9’ denote the sphere centred a t  the origin and n, the outward 
normal to its surface. We can assume that Y is not translating, hence the no-slip 
boundary condition can be expressed as 
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Finally, the assumption of slow flow leads to the vanishing of the torque on each 
sphere: la, eijk xj gkl n1 dA = 0. (7) 

The force on each sphere is also zero by symmetry. 

3. Definition and existence of the effective viscosity 
Let Sij and aUi/i3xj denote the volume averages of the stress and velocity gradient 

respectively, over some region "V. As shown by Batchelor (1970), they are related 

Here V is the volume of the region V ,  the sum is over the particles in V ,  and the 
integral in the summand is over the surface of the summand particle. For the periodic 
suspension described in $2, with V a unit cell of the lattice containing 9, (8) simplifies 
to 

p d V+p(y,, + y j i )  + (9) 
1 8. = -s..- vikxjnk dA, 

2 1  a3 VS,,, a 9  

and the bulk deviatoric stress Dij is therefore given by 

Dij = la, ( g. ak 2.-- 3 ~sagumkXm) .. nkdA. (10) 

Jay%XjnkdA = MijklYkP ( 1 1 )  

From the linearity of the governing equations and the boundary conditions, the 
integral in (10) must be linear in the average velocity gradient yr j  : 

Since no external couple is acting on the particles, Mtjkl must be symmetric in i and 
j, and for definiteness we may assume that Mijkk = 0, since only its contraction with 
ykl is significant. By using (11)  we can rewrite (10) in the form 

where 
D t j  = 2pgkl Y k l ,  (12) 

~ $ k l  = i 1 ~ ( 8 i k  sji + s i l s j k  - V i j s k l )  + h ; V M t j k z -  f s i j  Jfmmkl). (13) 

The tensor ,u& is symmetric and traceless in its first pair of indices and traceless in 
its last pair of indices. In  Appendix A we show that 

ru&l = PZlijj (14) 

and so ,u& is symmetric in ?c and 1 as well. Thus the average deviatoric stress Dij 
is linearly related to the symmetric part of yi j ,  which is the average rate-of-strain 
tensor. We are therefore justified in calling the effective viscosity of the 
suspension. 

The formulation becomes somewhat easier to use if we multiply both sides of (13) 
by 2yij ykl and use (1 1) .  Then 

(15) 2 p g k t  Y i j  Y k l  = pYCj'(Yij + Yj i )  + ' 0  'Yij I, xj giknkdA. 

Now the effective viscosity ,u& can be defined as the unique four-tensor that satisfies 
(15) for all yij with yii = 0, and which also satisfies the symmetry conditions 

(16) * * * 
p$kl  = p j i k l ,  pu,*,kl = 0 j  p i j k l  = pkl i j '  



272 K.  C .  Nunan ar,d J .  B.  Keller 

It is interesting to  note that (15) is precisely the formula one would get using the 
energy dissipation method. The right-hand side of (15) is the actual rate of energy 
dissipation within a lattice cell, while the left-hand side is the rate of energy 
dissipation that would occur in a homogeneous fluid with viscosity four-tensor prk l  
under the same overall shear yij. However, the symmetry condition (14) is necessary 
to define yz,, uniquely from this equation, and a proof of this identity apparently 
requires recourse to the averaged-equation formulation. 

4. Integral-equation formulation 

traction fi exerted by the fluid on the surface of the sphere Y .  It is given by 
The basic unknown quantity in equation (15) for the effective viscosity is the 

f i  = gijnj ( x ,EaY) .  (17) 

I n  this section we use Green's method and (2)-(7) to derive an integral equation of 
the first kind forfi. The derivation follows that of Zick & Homsy (1982). 

The fundamental singular solution vik, rtjk, qk ,  corresponding to  unit forces in the 
k-direction applied to  all positions y +  P, satisfies 

The solution for vik is (Hasimoto 1959) 

is a vector in the reciprocal lattice, which has basis 

b, = 7;1(u2 x u,), b2 = 7;1(u, x a, ) ,  b, = 7;1(a1 x a2). (23) 

The prime on the sum in (21) means that the index a = 0 is to be omitted. 
Let T be a unit cell containing the sphere at the origin, and let E,  = T -  9' be the 

fluid region within T.  For y E E,, we multiply (20) by 

From (2),  (3), (18) and (19) i t  may be shown that 

Then, by using (4), (25) and the divergence theorem, 

r 

ui(x)  and integrate over E,  to 

(YE Eo). (24) 

(25 )  

we can write (24) in the formt 

t jaT-av should be interpreted as laT-fa9: the normal n, points out of both the sphere 9 and 
the unit cell T. 
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We now proceed to simplify this equation. If f i  is any lattice-periodic function then 
the integral of fini over the surface of a unit cell is zero, since for each section of the 
cell boundary there is a congruent, periodically translated section on which the 
normal points in the opposite direction. The tensors r i j k ,  Vik and f f i i  are all periodic, 
and the non-periodic part of ui is simply y i , x j .  Thus the integral over aT in (26) 
becomes 

(27) Lui7ijk- Vik  cijl nj dA(x) = fa, YiZ xZ rijk nj dA(x) ( Y E E O ) -  S, T 
By using (19), (20), the divergence theorem, the periodicity of Vtk and the fact that 
yii = 0 ,  we can evaluate this latter integral. The result is 

[ U i r i j k - V i k c i j l n j d A ( x )  = -YkZYZ d v E E o ) .  (28) h T 
The integral over the surface of the sphere in (26) can also be simplified. Using (6), 

(20) and the divergence theorem, we can write the first part of it as 

Jay uirijk dA(x) = J9 “%j wZ7ijk-eklmWl xm s (x -Y) l  ( Y E E o ) .  (29) 

But f&jr$jk = 0 since 7 i j k  is symmetric in the indices i andj ,  and 6(x -y )  = 0 because 
~$9. Thus this integral is zero. This fact and (28) enable us to write (26) as 

- Y k l Y Z + j a y  V i k a i j n j d A ( x )  = - u k ( Y )  W E E , ) .  

fluid velocity there. Then (30) becomes 

f a y  

(30) 

We now let y tend to the boundary of the sphere and use (6) to evaluate the 

vikcijnj dA(x) = Y k j Y j - e k i j w i ! / j  (YEay).  (31) 

This is an integral equation for the traction f i  = gunj, but i t  also involves the angular 
velocity wi .  The no-torque condition (7) provides the needed supplementary condition, 
and we can solve (7) and (31) together for the unknowns f i  and o i .  These equations 
are 

(32) Iay V i k ( x , Y ) f i ( x )  dA(x) = Y k j Y j - - k i j w i  Y j  dvEa9). 

The homogeneous form of these equations has the solution f , (x )  = kxi for any 
constant k. This solution is everywhere normal to the surface of the sphere and 
represents a uniform pressure. This presents no difficulties, however, for since yii = 0 
the solvability condition for (32) is satisfied, and it may also be verified that any 
uniform pressure in the traction cancels out in (15) for the effective viscosity. 

5. Symmetry relations and cubic lattices 
For simple, body-centred or face-centred cubic lattices a considerable simplification 

of the problem is possible. Their symmetries impart a structure to the equations which 
allow us to determine the angular velocity wi explicitly and to reduce to two the 
number of independent coefficients in the effective viscosity tensor. To show this we 
define f p  to satisfy 
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and J xt f,rSdA(x) = 0. (35) 
a 9  

The second term on the right-hand side of (34) ensures that the solvability condition 
for the integral equation is satisfied, and condition (35) pins down the coefficient of 
the null solution xi in fp. From (32) and (34) we have, up to a solution of the 
homogeneous integral equation, that 

fi = PTo(Yrs-erlsWi)firs. (36) 

Consider for a moment an orthogonal linear transformation & which maps the 
reciprocal lattice onto itself. Then from (21) we can show that 

'tk(tppxp, 6pq.q) = t i m g k n  ' m n ( x p ,  Y p ) ,  (37) 

and by changing variables from x , y  to tx, t y  in (34) and (35) we can subsequently 
show that 

We now specialize to a cubic lattice. With no loss of generality we can assume that 
the coordinate axes and the principal axes of the lattice coincide. Then the reciprocal 
lattice is also cubic with its principal axes coincident with the coordinate axes. Thus 
it is invariant under the reflection transformation pi!) = ( - l)'t{ St,, which changes the 
sign of the tth coordinate of its argument, and the coordinate permutation 
transformation [s = Sa(i)j, where CJ is any permutation of the symbols {1,2,3}. For 
these particular orthogonal transformations (38) yields 

fp(p(t)x) = (-  1)'td+'tr+4sr(X) (39) 

and fi's(S"x) = fgga(s)(x). (40) 
These identities can be used to simplify (32) and (33). We first solve (33) for wi.  

(41 1 

Substitution of (36) into (33) yields 

(Yrs-%lsWi) ja9Eijkxjft?dA = O -  

However, (39) implies that 

E . .  x f Ts dA = ( -  1)1+'t~+'tr+'ts cijkxj f,rS dA, (42) 

and since this must hold for any t = 1,2,3,  the integral is non-zero only if the indices 
k, r ,  s are all different. By performing a coordinate permutation o taking k+ 1, r + 2  
and s+3,  and using (40), the integrals can be expressed as 

u k  1 8 J a y  

r r 

Upon substitution of (43) into (41) we obtain 

( Y r s - E r l s W l ) 6 k r s  = 0 (k = lj2, 3). (44) 

(45) 

This is just one-half of the curl of the average velocity, which is the same angular 
velocity that would be exhibited by a single sphere in an infinite fluid subjected to 
the shear yij .  Thus in the case of cubic lattices, each sphere spins as if the other spheres 
were not there. 

The solution of this equation for wi is 

1 - - - 1 6 .  2 lajYij. 
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The structure of the effective viscosity tensor can now be elucidated. By substituting 

f .  (46) a 2 ~ 7 o ( ~ r s  + Ysr)fP> 
(45) into (36) we obtain 

which upon substitution into (15) yields 

2 P & l Y i j Y k l  = PYij(Yij+Yji) +L%*(Yrs+Ysr) S,s4f;18dA. (47) 

This can be simplified, for identities (39) and (40) readily yield 

and J zj f,'sdA = J xb(j)f:{{] u(s) dA. (49) 
a 9  asp 

Identity (48) implies that  the integral is zero unless the indices j, i, r ,  s are equal in 
pairs, and (49) implies that many of the remaining non-zero integrals are equal. By 
using (48) and (49) we can write relation (47) in the form 

2 p c k l  Y i j Y k l  = p?ij(Yij +yji) + i p Y i j ( Y k l  +Ylk) [ ' i jk lq i  + (S i jSk l  -'ijkZ) 4; 
f (SikSjZ-Si jkl)  4: + ( s i l s jk - s i jk l )  c;]? (50) 

(51) where 

The solution of (50) for p& that satisfies the symmetry conditions (16) is 

p. ?," - - Jays f,'sdA. 

&kl = pU(l + P )  ;(&ik &jl + &iZ &jk ski) +p(a -P) (&ijkZ - Pij ski), (52)  

where (53) 

(54) 

Thus the effective viscosity tensor involves just two parameters when the lattice 
has cubic symmetry. They can be found from the solutions to two vector integral 
equations of the set (34), (35), namely those for f?l and flZ. 

6. Numerical method for cubic lattices 

determined by fll and f12, which satisfy 
For cubic lattices the two scalars in the effective-viscosity tensor pgkl are 

p o  ~{j (x~y)f l" (x)  dA(x) = ~jlyv-&vyj ( y E a y 4 ~ ,  b' = 1 > 2 ) .  (55) 
a 9  

Ja9xif;@(x) dA(x) = 0. (56) 

These equations appear to require a numerical solution. The major difficulty in 
solving (55) is the complexity of the kernel ui j ,  given by ( 2 1 ) ,  which precludes any 
method that requires numerous evaluations of uij .  We use a Galerkin method, with 
the basis functions chosen to be analytically integrable against v i j .  This method yields 
excellent accuracy with relatively few lattice-sum computations required. 

The Galerkin method may be outlined as follows. We write f l "  in the form 
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where {$im)> is a set of basis functions on aY that span all possible solutions for f i ” .  
The basis functions are doubly indexed for later convenience. Substitution of (57) into 
(55)  and integration against a second basis function yields a linear system of infinite 
rank for the unknown coefficients a:? : 

3 

where A$fi = j J lC70%j(X>Y)  $imW $i”’(Y) d A ( 4  d 4 Y )  

and b;F = (4, k - V ” 1 ~ j S )  j Y,$l‘”’W dAdv). (60) 

(59) 
a 9  a 9  

a 9  

The expansion (57) is truncated and the resulting finite matrix problem is solved, 
yielding an approximation for the coefficients in (57). 

As is readily verified from (21) and (55),f,’” is an odd function of X. Thus only odd 
functions $im) need be included in the set of basis functions. We choose for the basis 
functions the polynomials 

where {(pk, qk), k = 1,2,  . . .> is the set of all distinct ordered pairs of non-negative even 
integers. These polynomials can be derived from the spherical-harmonic functions and 
form a complete basis for the set of odd functions defined on the surface of a sphere. 

The above basis functions allow the integrals in (59) to be evaluated analytically. 
Since the basis functions are odd, substitution of (21) into (59) yields 

c 

X J  sin ( 2 7 ~ P . y )  $j”)(y)  dA(y), (62) 
a 9  

and we can show that (Nunan 1983) 

sin (C’X) xf’lxf2 xF dA(x) = ( -  1 ) p - l 4 7 ~ b ~ f l + ~  

Here p = !j(p1+p,+p3+ l ) ,  the index cj begins a t  0 or 1 according to whether p j  is 
even or odd and increases by steps of 2, and 

The matrix elements involve double integrals, and thus a product of terms such as 
(63), but the required calculations are not as computationally difficult as they might 
seem. Owing to recursive identities for the spherical Bessel functionsj,(z), the matrix 
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elements corresponding to basis functions of degree less than or equal to a given M 
can, for cubic lattices, all be computed from the principal lattice sums 

for r + s + t  = M + l , O  < r d s d t and 1 < K < M (SSFt is also needed for K = 0). In 
(65)-(67), z denotes 2xbS". For M = 11, which corresponds to 78 basis functions, there 
are only 684 such principal lattice sums. 

For cubic lattices the symmetries of vii and the basis polynomials produce 
considerable structure in the linear system (58) .  Specifically, the matrix A;& can be 
written in block-diagonal form with each block having one fourth the rank of the full 
matrix, and only one block each is required to compute the coefficients for f J 1  and 
f 1 2 .  The actual systems that must be solved to compute ftl and f J 2  are 

and 

respectively. Each of these matrices is symmetric. 
The matrix in (68)  is singular, with null vector a:? = Skl S,, representing a uniform 

pressure on the surface of the sphere. There is no physical basis for choosing one 
pressure over another (condition (56) is merely convenient), but as previously 
mentioned a uniform pressure does not affect the effective viscosity. We use a 
least-squares algorithm to obtain a solution of (68) ,  and do not implement (56) in 
the matrix equations. 

The solution of (55) and (56)  is not our final goal. That is rather the effective 
viscosity, which requires the integrals 

r co 
x,ft"dA = aiib12, (v = 1,2). J W k-1 

Thus we computed the coefficients in the effective viscosity tensor by solving the 
linear systems (68)  and (69) ,  and then computing 

a = ax b:;(a:: - a;;) (71) 

and p = $E bii(ai: + a;;). (72) 

p$kl = pU(l +p) ~(S ,kS; l l+S iZS; lk -~S i ; lSkZ)  +Pu(O1-p) ( S t j & Z - ~ 8 t j S / c L ) .  

k 

k 

Then we substituted these results into the formula for p$kt ,  which is 

(73) 
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7. Asymptotic form of the effective viscosity tensor 
The numerical method just described constituted our primary method of solution 

for the effective viscosity problem. However, as will be illustrated in $8,  the numerical 
method suffered from poor convergence properties a t  very high concentrations. An 
asymptotic analysis for the high concentration situation was therefore undertaken. 
An outline of the analysis is presented in Appendix B ; the results are reported here. 

The small parameter in the asymptotic analysis is 

The final result for the equation defining the effective viscosity tensor is 

p t k l  Y i j Y k l  = PCrnaxYt jYk l  {(fife-' +%In & ninjnk nl 
n 

+ i [ d i k  nj"l - c i p q € k r s A F i  n s  & njnq] h E - l  + O( I)}. (75) 
n n n 

Here the sums are over all unit vectors ii in the direction of a nearest-neighbour sphere, 
with respect to a single reference sphere, and the matrix Aij is defined by 

Aij = C. (dtj-ninj).  (76) 
n 

If each sphere in the lattice has more than two nearest-neighbour spheres then A is 
invertible. If each sphere has only two nearest-neighbour spheres, in directions kfi, 
then A is singular with codimension 1 and null vector f i .  For such two-nearest- 
neighbour lattices A-l should be replaced in (75) by (BTB)-' A ,  where B is the 4 x 3 
matrix consisting of A augmented by iiT. 

When (75) is solved for p&l, the term in brackets must be made symmetric and 
traceless in the subscript pairs i, j and k ,  I (by adding terms of the form ci jSkl  or d i j c k l ) ,  
and symmetric between these pairs (by adding a term of the form c i j k l ,  where 
Cgjkl = -ck l i j ) ,  in order to satisfy the defining conditions (16). The precise way to do 
this will depend upon the particular lattice being considered. A number of special 
cases have been examined for illustration, and the resulting effect viscosity tensors 
are as follows. 

(I) Two-nearest-neighbour lattices, with incident direction +_ ii : 

&kl = pcrncm ( S E  - + 81 40 In E - l) (ni nj - i d t j )  ( n k  n, - i d k l )  + O( 1 ) . (77) 

(11) Cubic lattices : 

P t k l  = PCmax [(A€-' +% h 6 - l )  c (ninj-$?ij) ( n k n l - $ d k , )  
n 

+ +[& 11 ( d i k d j l  d j k  -$8ij d k l )  In e- ' ]  + o( 1 ) .  (78) 
n 

(111) Tetragonal lattice (orthogonal basis at, with [all = (a,l < lasl): 

P g k l  = /hc,a,[(fif€-l+gh E - l )  c (ninj-iaij) ( n k n , - $ d k , )  
n 

+ & [ B , k B j ,  + B i l B j k - $ 8 g j B i l - $ 8 k l  B t j + $ 8 t j d k l B & ]  h€-']+O(1), (79) 

where 
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(IV) Hexagonal lattice: Same as for tetragonal lattice, but with the factor of 
in the second line of (79) replaced by Q. 

Equation (78) for cubic lattices can be written in the form (52), from which 
asymptotic formulas for a and /3 are easily obtained. They will be presented in $8, 
where numerical estimates of the leading non-singular terms in the asymptotic 
expansions will also be given. 

279 

8. Numerical results and discussion 
The Galerkin method used to  solve (55) and (56) involves approximatingf:” by a 

finite linear combination of basis polynomials. For any given calculation all basis 
polynomials of degree less than or equal to a specified M were used. The number of 
basis functions for a given M is $(M+ 1) (M+2), but because not all basis functions 
contribute to eachf:”, the actual number of unknowns is i ( M +  1)  ( M +  3) forfil and 
+(M+ 1)  (3M+ 5) for jtz. By using increasing values of M while keeping other 
parameters of the problem fixed? we obtained a sequence of results converging to 
the exact values of a and /3. Table 1 illustrates the convergence of the solutions as 
a function of M for various values of c. These results are typical. 

For low concentrations convergence is very rapid, and precise results can be 
obtained with just a few basis functions. Indeed, for concentrations less than 0.06 
only 3 basis functions ( M  = 1)  give results which have four decimal places of precision, 
and for concentrations less than 0.24 a similar degree of precision is obtained with 
just 21 basis functions ( M  = 5) .  

For higher concentrations the convergence rate is not as good. As c increases, the 
traction on the surface of a sphere becomes more and more peaked near points which 
are closest to other spheres, and more basis polynomials are needed to represent it 
accurately. However, the matrices increase in size with the number of basis functions, 
and their condition numbers increase accordingly. The effect of the inadequacy of 
the basis functions in representing the traction is magnified due to these high- 
condition numbers. This is particularly noticeable in the last column of table 1, where 
the computed value of a for M = 13 is actually less than that for M = 11. The typical 
behaviour was for a to increase with M ,  and such anomalies were never seen a t  lower 
concentrations. 

The inadequacy of a necessarily finite number of basis functions in representing 
the traction a t  high concentrations was the major source of numerical error. There 
was strong evidence of a downward bias in the high-concentration computations, for 
all three cubic lattices. This was because the basis polynomials could represent only 
a smoothed approximation to the traction at high concentrations, and so the 
computed estimates of the viscosity coefficients were sometimes too low. The 
face-centred cubic lattice results were the most adversely affected, because each 
sphere in a face-centred cubic lattice has more nearest neighbours than spheres in 
either a simple or body-centred cubic lattice. Thus the traction on the sphere surface 
is more complicated, and less well representable by the basis polynomials, for 
face-centred cubic lattices than in the other two cases. 

The truncation error in the principal lattice sums (65)-(67), as measured by the 
variation in the computed coefficients ct and /3 as the summation range was increased, 
was insignificant except for high concentrations and high values of M .  Cancellation 

t Since the matrix for a given M contains all the elements necessary to form the matrix for a 
smaller M, computing a sequence of results requires only slightly more effort than computing one 
result. 
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M\C 0.02 

1 0.053803 
3 0.053804 
5 
7 
9 

11 
13 

- 

- 

- 

- 
- 

0.06 

0.18650 
0.18653 
0.18654 
- 

0.12 

0.46468 
0.46552 
0.46579 
0.46580 

0.24 

1.4679 
1.5022 
1.5224 
1.5228 
1.5228 

0.32 

2.6563 
2.8638 
3.0151 
3.0239 
3.0256 
3.0257 
- 

0.40 

4.3606 
5.3206 
6.2231 
6.3882 
6.4440 
6.4541 
6.4541 

0.46 

5.8289 
8.4031 

11.397 
12.859 
13.674 
14.022 
14.037 

0.49 

6.5165 
10.479 
15.353 
19.388 
22.260 
24.499 
24.256 

TABLE 1 .  Convergence of a for simple cubic lattices 

and roundoff errors in the principal lattice sums were deemed insignificant in all cases, 
as the result did converge with increasing summation range. 

The speed of the algorithm depended upon the type of lattice, the number of basis 
polynomials, and the summation range. The computation of the principal lattice 
sums consumed the preponderance of CPU time, and the complexity of this 
computation increased as the cube of the summation range and as the square of M 
for a given lattice. The sums contained twice as many points for a body-centred lattice 
as for a simple cubic lattice, and four times as many for a face-centred lattice. One 
of the longer runs typically required several minutes of CPU time on a VAX-11/780, 
while a low-concentration run required only a few CPU seconds. 

As previously mentioned, the numerical results for low concentrations are both 
very precise and quick to compute. The question remains as to whether the results 
are correct. Zuzovsky (1976) obtained low concentration asymptotic results for what 
we have identified as the effective viscosity tensor. His results are 

a = $[l - (1  -60b) c+ 12ad + O(cZ)]-l, (80) 

/3 = ~ ~ [ 1 - ( 1 + 4 0 6 ) ~ - 8 8 a ~ ~ + O ( B ) ] - ~ ,  (81) 

where a and 6 depend on the lattice geometry as follows: 

sc BCC FCC 
a 0.2857 - 0.0897 - 0.0685 
b - 0.04655 0.01432 0.01271 

A comparison of our computed results with (80) and (81) is illustrated in table 2. 
The results agree to four decimal places for concentrations of 0.04 or less, with the 
degree of agreement slowly dropping off as the concentration increases. Zuzovsky’s 
formulas thus confirm that our program works correctly and produces accurate 
results. We can then turn the tables and use our results to check his. The values in 
table 2 and similar comparisons for the other lattices indicate that (80) and (81) are 
accurate to within 0.2 % for concentrations up to approximately 25 % that  of close 
packing, and to within 5 yo for concentrations up to approximately 50 yo that of close 
packing. 

For high concentrations, we compare the numerical results with our asymptotic 
results for 01 and /j’, obtained by writing (78) in the form (52). These formulas contain 
only singular terms in the small parameter E = 1 - (c/c, , ,)~.  To improve them, we 
assume that the leading non-singular terms are 1 and E lne-l. Thus, for example, we 
write the difference between a and the singular asymptotic terms for a simple cubic 
lattice in the form 

01 - (+ce-l  +$$I In E - I )  = C +  De In e- l+  O(e) ,  (82) 
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C 

0.005 
0.01 
0.02 
0.04 
0.08 
0.12 
0.16 
0.20 
0.24 
0.28 

a (comp.) 

0.012735 
0.025941 
0.053804 
0.11567 
0.26755 
0.46580 
0.72502 
1.0666 
1.5228 
2.1459 

a (asymp.) 
0.012735 
0.025943 
0.053810 
0.11570 
0.26756 
0.46517 
0.72 100 
1.0506 
1.4726 
2.0068 

P (comp.1 
0.0 1 245 1 
0.02481 3 
0.049320 
0.097696 
0.19337 
0.28995 
0.39009 
0.49665 
0.61306 
0.74379 

P (asymp.) 
0.012450 
0.02481 2 
0.04931 6 
0.09767 7 
0.19323 
0.28938 
0.38830 
0.49209 
0.60299 
0.72355 

TABLE 2. Numerical and asymptotic results : low concentrations, simple cubic lattices 

C 

FIGURE 1. a for a simple cubic lattice versus concentration c ,  computed numerically and also 
from the low- and high-concentration expansions. 

C 

FIGURE 2. p for a simple cubic lattice versus concentration c,  computed numerically and also 
from the low- and high-concentration expansions. 
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C 

FIQURE 3. a for a body-centred cubic lattice versus concentration c, computed numerically and 
also from the low- and high-concentration expansions. 

" 
0.1 0.2 0 . 3  0.4 0.5 0.6 

C 

FIGURE 4. /3 for a body-centred cubic lattice versus concentration c, computed numerically and 
also from the low- and high-concentration expansions. 

where C and D are constants to be determined. By plotting the computed value of 
the left side of (82) against E In E - ~ ,  we determine C and D from the intercept and slope 
of a line drawn through the plotted data for small e. We do the same for all other 
a and p. 

Unfortunately, i t  is precisely for small E that  the numerical results are least precise. 
Moreover, in computing the difference between the numerical and asymptotic values, 
we may lose significant digits. For a body-centred or face-centred cubic lattice, the 
graphs for a exhibit definite linear behaviour as E becomes small, and the parameters 
C and D of the limiting line can be determined with confidence. But in the other cases 
our estimates of C and D are not as reliable, and in the case of /3 for a face-centred 
cubic lattice no estimate of C and D can be made. 
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FIGURE 5. a for a 

U 
0.1 0.2 0.3 0.4 0.5 0.6 

c 
face-centred cubic lattice versus concentration c ,  computed 

also from the low- and high-concentration expansions. 
numerically and 

c 
FIGURE 6. /3 for a face-centred cubic lattice versus concentration c, computed numerically and 

also from the low-concentration expansion. 

The high concentration asymptotic formulas for the effective viscosity coefficients 
01 and /3, including our estimates of the constant terms and coefficients of E In e-l, are 
as follows. 
Simple cubic lattices: 

CL = ~ n ~ - ~ + ~ n l n e - ~ + 3 . 1 + 0 . 2 5 ~ 1 n s - ~ + O ( e ) ,  (83) 

p = ax In e-l+ 0.63 +O.OE In e-l+ O(e) .  (84) 

Body-centred cubic lattices : 

01 = ~z/3n1ne-1-11.73+12.3~1ne-1+O(e), ( 8 5 )  

p = ;2/3 ne-'+31 120 4 3  nine-'+ 12.8-335e1ne-1+O(e). (86) 
10 P L M  142 
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Face-centred cubic lattices : 

a = 5 2/2 7 c ~ -  + f& 4 2  71: In E -  + 9.7 - 15.56 In c1 + O ( E ) ,  (87) 

p = + 4 2 7 1 : ~ - - ' + % 4 2  nlnc- l+O(l) .  (88) 

In (83)-(88) e = 1 - (c/cmaxF, where cmaX = i71: for a simple cubic lattice, 4 4 3 7 ~  
for a body-centred cubic lattice, and i d 2  7c for a facc-centred lattice. 

Figures 1-43 show our computed results plotted against the volume concentration 
of the spheres, and also show graphs of Zuzovsky's low-concentration asymptotic 
formulas and our high-concentration asymptotic formulas. 

This work was supported in part by the Air Force Office of Scientific Research, 
the Army Research Office, the Office of Naval Research and the National Science 
Foundation. Computing time was provided by the CLaSSiC project of the Office of 
Naval Research. 

Appendix A. A symmetry relation for pGkl 
In this appendix we prove the identity p&i=p&ij, where pgkl is the tensor 

appearing in (12). The proof is a modification of that  of Hinch (1972), who proved 
a related result for a single particle in a Auid undergoing Stokes flow. 

We begin with the reciprocal theorem of Lorentz (1896), which states that for any 
two solutions (ui, aij) and (ui, aij) of the Stokesequations (2)-(4) in a volume bounded 
by a surface r with unit normal n, 

c c 

Let (ui, aij) and (ui, aij) be the two solutions of (2)-(7) corresponding to yij  and y;, 
respectively. Let T be any unit lattice cell which completely encloses the sphere a t  
the origin. Taking r to be the boundary of the fluid region within T, the first integral 
in (A 1 )  becomes 

c c 

Only the non-periodic part of uiaij contributes to the integral over the cell boundary 
in (A 2 ) .  Moreover, the no-torque condition (7) implies that the last integral in (A 2) 
is zero. Thus we have 

By using (3)-(6) and the divergence theorem we can then show that 
r P 

which, using ( l l ) ,  may be written as 
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The reciprocal theorem and (13) then imply 

YijPGkEYk = Y;jb$ktYkt. (A 7) 

But the choices of yij and y &  were arbitrary, up to tracelessness, and ,u& is traceless 
in its first and last pairs of indices. Thus 

v =  L v ,  v = L-lv, 

W = &LW, w = s-:L-%, 

Appendix B. Asymptotic analysis 
We consider two spheres, each of radius b and with their centres a distance 2L apart. 

Let fi  denote a unit vector along the line connecting their centres. We define a set 
of cylindrical coordinates (F, 6 , i )  with its origin a t  the midpoint between the spheres 
and its Z-axis in the &direction. Let f i  be a unit vector in the 6 = 0 direction and 
let# = f i  x f i .  For convenience we assume that the origin is translating with a velocity 
equal to the average velocity of the spheres. 

We write the fluid velocity in cylindrical coordinates as u = Gf+ id+ WZ. We define 
the parameter 

(B 1) 
b € = I - -  
L' 

which is small when the two spheres are nearly touching, and make the following 
scalings : 

5 = CLZ, = e-'L-'i 

F = e?iLr, r = e-il-'~, 

Equations (2)-(4) can then be written as 

u, + r-lu + r-'vO + w, = 0, 

-p ,  + ~ , , + ~ [ r ~ ~ u ~ ~ - r ~ ~ v , ~ - r ~ ~ v ~ - w ~ , ]  = 0, 

(B 3) 

(B 4) 

--p,+s[-~,,-r~'u,-r~~v~,]+s~[w,,+r~~w~+r~~w~~~ = 0. (B 6) 

- r-'pe + vzz + E[r-'ur8 + r-2u8 + v,, + r-lv,. - rP2 v - r-'we,] = 0, (B 5) 

The boundary condition (5) can be written in the scaled coordinates as 

u+_+(h2 - 1 )  u, + O ( 2 )  = & ( o * f i + p ,  yi jnj)  sin 0 +_ ( -a*# +mi y i j n j )  cos 8 

- EZ[  - w * f i  sin 8 + o-# cos 81, (B 7) 

v+$e(h2- 1) v,+O(s2) = +_ (w*#-m, yi jnj)  sin8k ( o . A + p ,  y i jnj)  cos0 

- dw. fir + EZ[O-# sin 8 + w -& cos 61, (B 8) 

wf$e(h2- 1)w,+O(s2) = -ww.rsin8+w-#rcosB-LE-tn,yijnj (B 9) 

on z = & h ,  where h = 1 +$+2. 

The right-hand sides of the boundary conditions can be divided into three parts 

10-2 
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corresponding to the relative normal, tangential and rotational motion of the spheres. 
We solve (B 3)-(B 6) for each part separately. For a normal motion of the spheres, v is 
identically zero and p ,  u and w do not depend on 0. We express these latter variables 
as &niyijnj times a regular power series in e, and perform a standard asymptotic 
analysis. The resulting differential equations can be integrated, with the boundary 
conditions determining the constants of integration, until a last second-order 
differential equation involving the pressure is obtained. This is solved with the 
following regularity conditions: (i) p ,  is regular at r = 0, and (ii) p+O as r+  CO. The 
first condition is necessary so that the fluid velocity will be regular a t  r = 0, and the 
second condition is required so that this inner solution for the pressure can match 
with a (regular in e) outer solution. A similar analysis is performed for the relative 
tangential and rotational motion problems as well. The combined results are 

p = -~s-?niyijnih-2+dn.y..n.[(3h-3-$h-4) 2 23 3 ZZ-ah-1 20 +ah-2-3h-3)1 10 4 

- s [ ( ~ , y , ~ n ~  + o * f i )  sin 6 + (miyijnj  - o * B )  cos B] h3-z  + O(eg), (B 10) 

u =€-Bniyiinj:h-3r(z2-h2) + [ ( p i y t j n j + o . A )  sine 

+ (miYi jn j -cooj )  cose] h-lz+dniyijnj[( -$h-4r+3h-5r) (z4-h4) 

+ (gpr -1Sh-3? 5 + z!h-4r ) ( z2 -h2)-:r(i-~j]+o(+ (B 11)  

v = [( -mi yijnj  + o-J) sin 6 + (pi yij nj + o a r % )  cos 01 h-lz - O -  i i rd  + O ( B ) ,  (B 12) 

w = s- tni~i inj[(h-3-~~h-4)~3+ah--2z]  + [ (p i y i jn j+O-A)  sine 

By using (3), (17) and (B 10)-(B 13), a formula for the traction on one of the spheres 
can be obtained. For the sphere centred a t  (T = 0, Z = - L)  it  is 

fi = pub-1L{[c-fni yiinj( -2h-2~) +e-l[(p,yijnj + o . A )  sin 6 

+ ( m i y i j n j - o . j )  COSB] h-1+e-:niyijnj(~h,h-1r+~h,h-2r-$hh-3r)+0(1)]~ 

+ [€-I[( - miyij nj + O - B )  sin B + (piyi j  nj + o*fi)  cos 81 h-l+ O(1 )I P 
+ [s-2ni y i j  nj ih-2 + € - I n .  y . . n.(ah-l+ t h-2 + :h-3) 

2 23 3 5  

- E - : [  (piyi j  nj + w - fit) sin 8 + (mi y i j  nj - 0.9) cos 61 2 h - l ~  + O( 1 )] Z}. (B 14) 

The dominant contribution to the integral in (15) a t  high concentrations is from 
the traction near those points which are closest to neighbouring spheres. By 
multiplying (B 14) by xj and integrating over just that half of the sphere facing its 
neighbour, and summing the result over all unit vectors ii in the direction of a 
nearest-neighbour sphere, we obtain 

+ 2(dik-  nink) Yklnznj In e-l- 2eikzw,n,nj In e-l] + O( 1) .  (B 15) 

The identity ni nj + mimj +pipj = Sij has been used to remove any explicit dependence 
of (B 15) on f i  or#. 

By substituting (B 15) into (7)  we obtain an algebraic equation for ok. It is 
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where A is given by (76). If there exist only two nearest-neighbour spheres then A 
is singular and the component of wk along the line through their centres is free. 
However, it  is easily verified that such a free component does not contribute to (B 15). 

The final equation for the effective viscosity is obtained by substituting 
A ; : E ~ ~ ~ Y ~ ~ Z ~ ~ ~ ~  for wk in (B 15), and then substituting the result into (15). After 
reordering the subscripts, and using the fact that  rt1L3 = 3cm,,/4n, we obtain (75). 
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